\qquad

A.A.10: Solving Linear Systems 2: Solve systems of two linear equations in two variables algebraically

1 What is the value of the y-coordinate of the solution to the system of equations $x+2 y=9$ and $x-y=3$?

2 What is the value of the y-coordinate of the solution to the system of equations $x-2 y=1$ and $x+4 y=7$?

3 If $a+3 b=13$ and $a+b=5$, the value of b is

4 If $x+y=-10$ and $x-y=2$, what is the value of x ?

5 What is the value of y in the following system of equations?

$$
\begin{aligned}
& 2 x+3 y=6 \\
& 2 x+y=-2
\end{aligned}
$$

6 What is the value of the y-coordinate of the solution to the system of equations $2 x+y=8$ and $x-3 y=-3$?

7 What point is the intersection of the graphs of the lines $2 x-y=3$ and $x+y=3$?

8 Which ordered pair satisfies the system of equations below?

$$
\begin{array}{r}
3 x-y=8 \\
x+y=2
\end{array}
$$

9 What is the solution of the system of equations $2 x-5 y=11$ and $-2 x+3 y=-9$?

10 Which ordered pair is the solution of the following system of equations?

$$
\begin{gathered}
3 x+2 y=4 \\
-2 x+2 y=24
\end{gathered}
$$

11 What is the solution of the system of equations $c+3 d=8$ and $c=4 d-6$?

12 The equations $5 x+2 y=48$ and $3 x+2 y=32$ represent the money collected from school concert ticket sales during two class periods. If x represents the cost for each adult ticket and y represents the cost for each student ticket, what is the cost for each adult ticket?

13 Solve the following system of equations algebraically:

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 4 x+3 y=7
\end{aligned}
$$

[Only an algebraic solution can receive full credit.]

14 When solved graphically, which system of equations will have exactly one point of intersection?

1) $y=-x-20$
$y=x+17$
2) $y=0.5 x+30$
$y=0.5 x-30$
3) $y=\frac{3}{5} x+12$
$y=0.6 x-19$
4) $y=-x+15$
$y=-x+25$
A.A.10: Solving Linear Systems 2: Solve systems of two linear equations in two variables algebraically
Answer Section
1 ANS:
2
$x+2 y=9$
$x-y=3$
$3 y=6$
$y=2$
REF: 060925ia
2 ANS:
1
$x-2 y=1$
$x+4 y=7$
$-6 y=-6$
$y=1$
REF: 080920ia
3 ANS:
4
$a+3 b=13$
$a+b=5$

$$
\begin{aligned}
2 b & =8 \\
b & =4
\end{aligned}
$$

REF: 080706a
4 ANS:
-4
$x+y=-10$
$x-y=2$
$2 x=-8$
$x=-4$
REF: 060824a

5 ANS:
4
$2 x+3 y=6$

$$
\begin{aligned}
2 x+y & =-2 \\
2 y & =8 \\
y & =4
\end{aligned}
$$

REF: 080013a
6 ANS:
2
$2(x-3 y=-3)$
$2 x+y=8$
$2 x-6 y=-6$
$7 y=14$
$y=2$
REF: 081021ia
7 ANS:
$(2,1)$

$$
\begin{array}{rlrl}
2 x-y & =3 . & x+y & =3 \\
x+y & =3 & & 2+y=3 \\
3 x & =6 & y & =1 \\
x & =2 & &
\end{array}
$$

REF: 080429a
8 ANS:
(2.5, -0.5)

$$
\begin{array}{rlrl}
3 x-y & =8 & \\
x+y & =2 & 2.5+y & =2 \\
4 x & =10 & y & =-0.5 \\
x & =2.5 &
\end{array}
$$

REF: 060716a
9 ANS:

$$
\begin{array}{rlrl}
(3,-1) & & \\
2 x-5 y & =11 & 2 x-5(-1) & =11 \\
-2 x+3 y & =-9 & 2 x & =6 \\
-2 y & =2 & x & =3 \\
y & =-1 &
\end{array}
$$

REF: 081109ia

10 ANS:
$(-4,8)$

$$
\begin{array}{rlrl}
3 x+2 y & =4 & 3 x+2 y & =4 \\
-2 x+2 y & =24 & 3(-4)+2 y & =4 \\
5 x & =-20 & -12+2 y & =4 \\
x & =-4 & y & =8
\end{array}
$$

REF: 060007a
11 ANS:

$$
\begin{array}{rlrl}
c=2, d=2 & & \\
c+3 d & =8 & & c=4 d-6 \\
4 d-6+3 d & =8 & & c=4(2)-6 \\
7 d & =14 & c=2 \\
d & =2 & &
\end{array}
$$

REF: 061012ia
12 ANS:
\$8
$5 x+2 y=48$
$3 x+2 y=32$

$$
\begin{aligned}
2 x & =16 \\
x & =8
\end{aligned}
$$

REF: fall0708ia
13 ANS:
$(-2,5) . \quad 3 x+2 y=4 \quad 12 x+8 y=16 . \quad 3 x+2 y=4$

$$
4 x+3 y=7 \quad 12 x+9 y=21 \quad 3 x+2(5)=4
$$

$$
\begin{array}{rl}
y=5 & 3 x
\end{array}=-6
$$

REF: 010937ia
14 ANS: 1
In (2) - (4), the equations in each system have equal slope, and therefore do not intersect.
REF: 080529a

