A2.S.7: Linear Regression: Determine the function for the regression model, using appropriate technology, and use the regression function to interpolate/extrapolate from the data

1 The accompanying table shows the enrollment of a preschool from 1980 through 2000. Write a linear regression equation to model the data in the table.

Year (x)	Enrollment (y)
1980	14
1985	20
1990	22
1995	28
2000	37

2 The data table below shows water temperatures at various depths in an ocean.

Water Depth (x) (meters)	Temperature (y) (°C)
50	18
75	15
100	12
150	7
200	1

Write the linear regression equation for this set of data, rounding all values to the *nearest thousandth*. Using this equation, predict the temperature (°C), to the *nearest integer*, at a water depth of 255 meters.

3 The number of newly reported crime cases in a county in New York State is shown in the accompanying table. Write the linear regression equation that represents this set of data. (Let x = 0 represent 1999.) Using this equation, find the projected number of new cases for 2009, rounded to the *nearest whole number*.

Year (x)	New Cases (y)			
1999	440			
2000	457			
2001	369			
2002	351			

4 In a mathematics class of ten students, the teacher wanted to determine how a homework grade influenced a student's performance on the subsequent test. The homework grade and subsequent test grade for each student are given in the accompanying table.

Homework Grade	Test Grade (y)
94	98
95	94
92	95
87	89
82	85
80	78
75	73
65	67
50	45
20	40

a Give the equation of the linear regression line for this set of data.

b A new student comes to the class and earns a homework grade of 78. Based on the equation in part a, what grade would the teacher predict the student would receive on the subsequent test, to the nearest integer?

Number of Blocks from the Beach (x)	Price of a Cottage (y)
5	\$132,000
0	\$310,000
4	\$204,000
2	\$238,000
1	\$275,000
7	\$60,800

6 A factory is producing and stockpiling metal sheets to be shipped to an automobile manufacturing plant. The factory ships only when there is a minimum of 2,050 sheets in stock. The accompanying table shows the day, x, and the number of sheets in stock, f(x).

Day (x)	Sheets in Stock (f(x))			
1	860			
2	930			
3	1000			
4	1150			
5	1200			
6	1360			

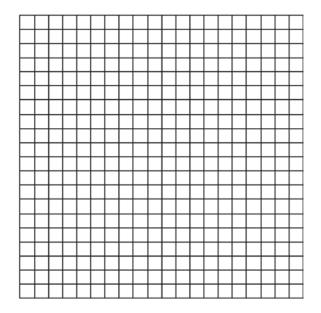
Write the linear regression equation for this set of data, rounding the coefficients to *four decimal places*. Use this equation to determine the day the sheets will be shipped.

Name:	

7 The accompanying table shows the percent of the adult population that married before age 25 in several different years. Using the year as the independent variable, find the linear regression equation. Round the regression coefficients to the *nearest hundredth*. Using the equation found above, estimate the percent of the adult population in the year 2009 that will marry before age 25, and round to the *nearest tenth of a percent*.

Year (x)	Percent (y)			
1971	42.4			
1976	37.4			
1980	37.1			
1984	34.1			
1989	32.1			
1993	28.8			
1997	25.7			
2000	25.5			

8 The mid-September statewide average gas prices, in dollars per gallon, (y), for the years since 2000, (x), are given in the table below.


Year Since 2000 (x)	Price Per Gallon (y)
1	1.345
2	1.408
3	1.537
4	1.58

Write a linear regression equation for this set of data. Using this equation, determine how much *more* the actual 2005 gas price was than the predicted gas price if the actual mid-September gas price for the year 2005 was \$2.956.

9 The table below shows the results of an experiment that relates the height at which a ball is dropped, *x*, to the height of its first bounce, *y*.

Drop Height (x) (cm)	Bounce Height (y) (cm)
100	26
90	23
80	21
70	18
60	16

Find \overline{x} , the mean of the drop heights. Find \overline{y} , the mean of the bounce heights. Find the linear regression equation that best fits the data. Show that $(\overline{x}, \overline{y})$ is a point on the line of regression. [The use of the grid is optional.]

10 The 1999 win-loss statistics for the American League East baseball teams on a particular date is shown in the accompanying chart.

	W	L
New York	52	34
Boston	49	39
Toronto	47	43
Tampa Bay	39	49
Baltimore	36	51

Find the mean for the number of wins, \overline{W} , and the mean for the number of losses, \overline{L} , and determine if the point $(\overline{W}, \overline{L})$ is a point on the line of best fit. Justify your answer.

11 The availability of leaded gasoline in New York State is decreasing, as shown in the accompanying table.

Year	1984	1988	1992	1996	2000
Gallons Available (in thousands)	150	124	104	76	50

Determine a linear relationship for x (years) versus y (gallons available), based on the data given. The data should be entered using the year and gallons available (in thousands), such as (1984, 150). If this relationship continues, determine the number of gallons of leaded gasoline available in New York State in the year 2005. If this relationship continues, during what year will leaded gasoline first become unavailable in New York State?

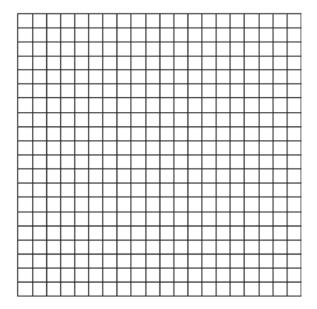
Regents Exam Questions A2.S.7: Linear Regression www.jmap.org

12 The accompanying table illustrates the number of movie theaters showing a popular film and the film's weekly gross earnings, in millions of dollars.

Number of Theaters (x)	443	455	493	530	569	657	723	1,064
Gross Earnings (y) (millions of dollars)	2.57	2.65	3.73	4.05	4.76	4.76	5.15	9.35

Write the linear regression equation for this set of data, rounding values to *five decimal places*. Using this linear regression equation, find the approximate gross earnings, in millions of dollars, generated by 610 theaters. Round your answer to *two decimal places*. Find the minimum number of theaters that would generate at least 7.65 million dollars in gross earnings in one week.

13 Since 1990, fireworks usage nationwide has grown, as shown in the accompanying table, where *t* represents the number of years since 1990, and *p* represents the fireworks usage per year, in millions of pounds.


Number of Years Since 1990 (t)	0	2	4	6	7	8	9	11
Fireworks Usage per Year, in Millions of Pounds (p)	67.6	88.88	119.0	120.1	132.5	118.3	159.2	161.6

Find the equation of the linear regression model for this set of data, where *t* is the independent variable. Round values to *four decimal places*. Using this equation, determine in what year fireworks usage would have reached 99 million pounds. Based on this linear model, how many millions of pounds of fireworks would be used in the year 2008? Round your answer to the *nearest tenth*.

14 Two different tests were designed to measure understanding of a topic. The two tests were given to ten students with the following results:

Test x	75	78	88	92	95	67	58	72	74	81
Test y	81	73	85	88	89	73	66	75	70	78

Construct a scatter plot for these scores, and then write an equation for the line of best fit (round slope and intercept to the *nearest hundredth*). Find the correlation coefficient. Predict the score, to the *nearest integer*, on test *y* for a student who scored 87 on test *x*.

A2.S.7: Linear Regression: Determine the function for the regression model, using appropriate technology, and use the regression function to interpolate/extrapolate from the data Answer Section

1 ANS: y = 1.08x - 2125

PTS: 2 REF: 060722b

2 ANS:

y = -0.112x + 23.448. $-0.112(255) + 23.448 \approx -5$

PTS: 4 REF: 061027b

3 ANS:

y = -35.5x + 457.5, 103

PTS: 4 REF: 060927b

4 ANS:

y = 0.8344648562x + 14.64960064, 80

PTS: 4 REF: 010328b

5 ANS:

y = -34739.71292x + 313309.0909, 209,090

PTS: 4 REF: 010530b

6 ANS:

y = 98.8571x + 737.3333, 14

PTS: 4 REF: 060631b

7 ANS:

y = -0.58x + 1185.09, 19.9

PTS: 4 REF: 080728b

8 ANS:

y = 0.0834x + 1.259, 1.28

PTS: 4 REF: 011028b

9 ANS:

 $\bar{x} = 80, \bar{y} = 20.8$, and y = 0.25x + 0.8, 0.25(80) + 0.8 = 20.8, so (\bar{x}, \bar{y}) is a point on the line of regression.

PTS: 4 REF: 080331b

10 ANS:

 \overline{W} = 44.6 and \overline{L} = 43.2. If the equation of the line of best fit is y = -1.007559x + 88.137149, -1.007559(44.6) + 88.137149 = 43.2, so $(\overline{W}, \overline{L})$ is a point on the line of best fit.

PTS: 6 REF: 060134b

11 ANS:

$$y = -6.2x + 12451.2$$
, 20.2 thousand, 2008

PTS: 6

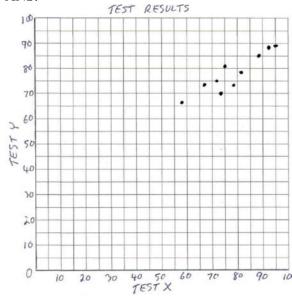
REF: 080133b

12 ANS:

$$y = 0.01021x - 1.66787, 4.56, 913$$

PTS: 6

REF: 080533b


13 ANS:

$$p = 8.1875t + 72.7860, 1993, 220.2$$

PTS: 6

REF: 010633b

14 ANS:

y = 0.62x + 29.18, r = 0.92, 83

PTS: 6

REF: 010234b