A.N.1: Identifying Properties: Identify and apply the properties of real numbers (closure, commutative, associative, distributive, identity, inverse)

1. Which property is illustrated by the equation $ax + ay = a(x + y)$?
 - 1) associative
 - 2) commutative
 - 3) distributive
 - 4) identity

2. The statement $2 + 0 = 2$ is an example of the use of which property of real numbers?
 - 1) associative
 - 2) additive identity
 - 3) additive inverse
 - 4) distributive

3. The equation $3(4x) = (4x)3$ illustrates which property?
 - 1) commutative
 - 2) associative
 - 3) distributive
 - 4) multiplicative inverse

4. Tori computes the value of $8 \cdot 95$ in her head by thinking $8(100 - 5) = 8 \times 100 - 8 \times 5$. Which number property is she using?
 - 1) associative
 - 2) distributive
 - 3) commutative
 - 4) closure

5. Which property of real numbers is illustrated by the equation $-\sqrt{3} + \sqrt{3} = 0$?
 - 1) additive identity
 - 2) commutative property of addition
 - 3) associative property of addition
 - 4) additive inverse

6. The equation $\ast(\Delta + \star) = \ast\Delta + \ast\star$ is an example of which property?
 - 1) associative law
 - 2) commutative law
 - 3) distributive law
 - 4) transitive law

7. While solving the equation $4(x + 2) = 28$, Becca wrote $4x + 8 = 28$. Which property did she use?
 - 1) distributive
 - 2) associative
 - 3) commutative
 - 4) identity

8. If M and A represent integers, $M + A = A + M$ is an example of which property?
 - 1) commutative
 - 2) associative
 - 3) distributive
 - 4) closure
9 Which property is illustrated by the equation \(\frac{3}{2} x + 0 = \frac{3}{2} x \)?
1) commutative property of addition
2) distributive property
3) additive inverse property
4) additive identity property

10 Which property is represented by the statement \(\frac{1}{2} (6a + 4b) = 3a + 2b \)?
1) commutative
2) distributive
3) associative
4) identity

11 Which property is illustrated by the equation \(6 + (4 + x) = 6 + (x + 4) \)?
1) associative property of addition
2) associative property of multiplication
3) distributive property
4) commutative property of addition

12 Which property is illustrated by the equation \(4x(2x - 1) = 8x^2 - 4x \)?
1) associative
2) commutative
3) distributive
4) identity

13 Which property of real numbers is illustrated by the equation \(52 + (27 + 36) = (52 + 27) + 36 \)?
1) commutative property
2) associative property
3) distributive property
4) identity property of addition

14 A teacher asked the class to solve the equation \(3(x + 2) = 21 \). Robert wrote \(3x + 6 = 21 \) as his first step. Which property did he use?
1) associative property
2) commutative property
3) distributive property
4) zero property of addition

15 When solving for the value of \(x \) in the equation \(4(x - 1) + 3 = 18 \), Aaron wrote the following lines on the board.

\[
\begin{align*}
\text{[line 1]} & \quad 4(x - 1) + 3 = 18 \\
\text{[line 2]} & \quad 4(x - 1) = 15 \\
\text{[line 3]} & \quad 4x - 1 = 15 \\
\text{[line 4]} & \quad 4x = 16 \\
\text{[line 5]} & \quad x = 4
\end{align*}
\]
Which property was used \emph{incorrectly} when going from line 2 to line 3?
1) distributive
2) commutative
3) associative
4) multiplicative inverse

16 A method for solving \(5(x - 2) - 2(x - 5) = 9 \) is shown below. Identify the property used to obtain each of the two indicated steps.

\[
\begin{align*}
5(x - 2) - 2(x - 5) &= 9 \\
(1) \quad 5x - 10 - 2x + 10 &= 9 \\
(2) \quad 5x - 2x - 10 + 10 &= 9 \\
3x + 0 &= 9 \\
3x &= 9 \\
x &= 3
\end{align*}
\]
A.N.1: Identifying Properties

Identify and apply the properties of real numbers (closure, commutative, associative, distributive, identity, inverse)

Answer Section

<table>
<thead>
<tr>
<th></th>
<th>Answer</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>fall0705ia</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>080802ia</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>081319ia</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>060306a</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>060413a</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>080504a</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>080601a</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>010720a</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>060714a</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>010812a</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>060827a</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>080806a</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>010924a</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>081419ia</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>061405ia</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Distributive; (2) Commutative</td>
<td>061132ia</td>
</tr>
</tbody>
</table>

REF: 061132ia