0112ge

1 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

2 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

3 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

4 In the diagram below, $M A T H$ is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

5 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

6 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

7 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

3)

4)

8 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

9 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F ?$

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

10 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

11 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

12 Which equation represents circle O with center $(2,-8)$ and radius 9 ?

1) $(x+2)^{2}+(y-8)^{2}=9$
2) $(x-2)^{2}+(y+8)^{2}=9$
3) $(x+2)^{2}+(y-8)^{2}=81$
4) $(x-2)^{2}+(y+8)^{2}=81$

13 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number, true
3) A prime number is two; false
4) A prime number is two; true

14 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

15 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

16 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

17 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

18 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathcal{B} through point A ?

1) one
2) two
3) zero
4) infinite

19 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

20 What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

21 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

22 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

23 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

24 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

25 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

26 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

27 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

28 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

29 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

30 In the diagram below, point M is located on $\overleftrightarrow{A B}$ Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

31 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

32 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\Delta R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

33 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

34 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

35 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

36 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can.
Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

37 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

38 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

0112ge

Answer Section
1 ANS: 2

$$
\begin{aligned}
6 x+42 & =18 x-12 \\
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

$\begin{array}{rlllll}\text { PTS: } 2 & \text { REF: 011201ge } & \text { STA: G.G.35 } & \text { TOP: Parallel Lines and Transversals } \\ 2 & \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 011202ge } & \text { STA: } & \text { G.G. } 21\end{array}$
TOP: Centroid, Orthocenter, Incenter and Circumcenter
3 ANS: 2 PTS: 2 REF: 011203ge STA: G.G. 73
TOP: Equations of Circles
4 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
5 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2 REF: 011205ge STA: G.G. 67 TOP: Distance
KEY: general
6 ANS: $2 \quad$ PTS: 2
REF: 011206ge STA: G.G. 32
TOP: Exterior Angle Theorem
7 ANS: $1 \quad$ PTS: 2
REF: 011207ge STA: G.G. 20
TOP: Constructions
8 ANS: $4 \quad$ PTS: 2
TOP: Segments Intercepted by Circle
9 ANS: $3 \quad$ PTS: 2
REF: 011208ge STA: G.G. 53
KEY: two tangents
REF: 011209ge STA: G.G. 44
TOP: Similarity Proofs
10 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
11 ANS: 2
REF: 011210ge
TOP: Properties of Transformations
12 ANS: 4 PTS: 2
STA: G.G. 30
REF: 011211 ge
TOP: Interior and Exterior Angles of Triangles
STA: G.G. 55
REF: 011212ge STA: G.G. 71
TOP: Equations of Circles
13 ANS: 1
PTS: 2
REF: 011213ge STA: G.G. 24

14 ANS: 2
$\frac{50+x}{2}=34$
$50+x=68$

$$
x=18
$$

PTS: 2 REF: 011214ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
15 ANS: 2 PTS. 2
TOP: Volume
16 ANS: 4 PTS.
TOP: Triangle Congruency
17 ANS: $3 \quad$ PTS: 2
TOP: Parallel and Perpendicular Lines
18 ANS: $1 \quad$ PTS: 2
REF: 011218ge STA: G.G. 3
TOP: Planes
19 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2 REF: 011219ge
20 ANS: 1
PTS: 2
STA: G.G. 40
TOP: Trapezoids
TOP: Equations of Circles
21 ANS: $1 \quad$ PTS:
TOP: Solids
22 ANS: 4
PTS: 2
REF: 011220ge
STA: G.G. 72

TOP: Angle Side Relationship
23 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2
REF: 011223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
24 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
25 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector

26 ANS: 1

$$
\begin{aligned}
7 x+4 & =2(2 x+5) . P M=2(2)+5=9 \\
7 x+4 & =4 x+10 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
27 ANS: 4

$$
\begin{aligned}
x \cdot 4 x & =6^{2} . P Q=4 x+x=5 x=5(3)=15 \\
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: leg
28 ANS: 2
$5-3=2,5+3=8$
PTS: 2 REF: 011228ge STA: G.G. 33 TOP: Triangle Inequality Theorem
29 ANS:
$\begin{aligned} 2 x-20 & =x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60 \\ x & =40\end{aligned}$
PTS: 2 REF: 011229ge STA: G.G. 52 TOP: Chords
30 ANS:

PTS: 2 REF: 011230ge STA: G.G. 22 TOP: Locus
31 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
32 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2
REF: 011232ge
STA: G.G. 54
TOP: Rotations

33 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
34 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords
35 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4 REF: 011235ge STA: G.G. 55 TOP: Properties of Transformations
36 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume and Lateral Area
37 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4
REF: 011237 ge
STA: G.G. 42
TOP: Midsegments

38 ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs

