0112ge

1 Line *n* intersects lines *l* and *m*, forming the angles shown in the diagram below.

Which value of *x* would prove $l \parallel m$?

- 1) 2.5
- 2) 4.5
- 3) 6.25
- 4) 8.75
- 2 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
 - 1) scalene triangle
 - 2) isosceles triangle
 - 3) equilateral triangle
 - 4) right isosceles triangle
- 3 A circle has the equation $(x-2)^2 + (y+3)^2 = 36$. What are the coordinates of its center and the length of its radius?
 - 1) (-2,3) and 6
 - 2) (2,-3) and 6
 - 3) (-2,3) and 36
 - 4) (2,-3) and 36

4 In the diagram below, *MATH* is a rhombus with diagonals \overline{AH} and \overline{MT} .

If $m \angle HAM = 12$, what is $m \angle AMT$?

- 1) 12
- 2) 78
- 3) 84
- 4) 156
- 5 A line segment has endpoints (4, 7) and (1, 11). What is the length of the segment?
 - 1) 5
 - 2) 7
 - 3) 16
 - 4) 25
- 6 In $\triangle FGH$, m $\angle F = 42$ and an exterior angle at vertex *H* has a measure of 104. What is m $\angle G$? 1) 34
 - 2) 62
 - 2)
 02

 3)
 76
 - 4) 146

7 Which diagram represents a correct construction of equilateral $\triangle ABC$, given side \overline{AB} ?

8 In the diagram below, $\triangle ABC$ is circumscribed about circle *O* and the sides of $\triangle ABC$ are tangent to the circle at points *D*, *E*, and *F*.

If AB = 20, AE = 12, and CF = 15, what is the length of \overline{AC} ?

- 1) 8
- 2) 15
- 3) 23
- 4) 27

9 In $\triangle ABC$ and $\triangle DEF$, $\frac{AC}{DF} = \frac{CB}{FE}$. Which additional information would prove $\triangle ABC \sim \triangle DEF$? 1) AC = DF2) CB = FE

- $2) \quad CB = FE$
- 3) $\angle ACB \cong \angle DFE$
- 4) $\angle BAC \cong \angle EDF$
- 10 The angles of triangle ABC are in the ratio of 8:3:4. What is the measure of the *smallest* angle?
 1) 12°
 - 2) 24°
 - 3) 36°
 - 4) 72°
- 11 When a quadrilateral is reflected over the line y = x, which geometric relationship is *not* preserved?
 - 1) congruence
 - 2) orientation
 - 3) parallelism
 - 4) perpendicularity

- 12 Which equation represents circle O with center (2, -8) and radius 9?
 - 1) $(x+2)^2 + (y-8)^2 = 9$ 2) $(-2)^2 + (-2)^2 = 0$

2)
$$(x-2)^2 + (y+8)^2 = 9$$

- 3) $(x+2)^2 + (y-8)^2 = 81$
- 4) $(x-2)^2 + (y+8)^2 = 81$
- 13 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?
 - 1) Two is not a prime number; false
 - 2) Two is not a prime number; true
 - 3) A prime number is two; false
 - 4) A prime number is two; true
- 14 In the diagram below of circle *O*, chords \overline{AB} and \overline{CD} intersect at *E*.

- If $m \angle AEC = 34$ and $\widehat{mAC} = 50$, what is \widehat{mDB} ?
- 1) 16
- 2) 18
- 3) 68
- 4) 118
- 15 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
 - 1) 3.3 by 5.5
 - 2) 2.5 by 7.2
 - 3) 12 by 8
 - 4) 9 by 9

16 The diagram below shows a pair of congruent triangles, with $\angle ADB \cong \angle CDB$ and $\angle ABD \cong \angle CBD$.

Which statement must be true?

- 1) $\angle ADB \cong \angle CBD$
- 2) $\angle ABC \cong \angle ADC$
- 3) $AB \cong CD$
- 4) $\overline{AD} \cong \overline{CD}$
- 17 What is an equation of the line that is perpendicular to the line whose equation is $y = \frac{3}{5}x - 2$ and that passes through the point (3, -6)?

1)
$$y = \frac{5}{3}x - 11$$

2) $y = -\frac{5}{3}x + 11$
3) $y = -\frac{5}{3}x - 1$
4) $y = \frac{5}{3}x + 1$

F

- 18 Point A lies in plane B. How many lines can be drawn perpendicular to plane B through point A?
 - 1) one
 - 2) two
 - zero
 infinite

3

19 In the diagram below of isosceles trapezoid *ABCD*, AB = CD = 25, AD = 26, and BC = 12.

What is the length of an altitude of the trapezoid?

- 1) 7
- 2) 14
- 3) 19
- 4) 24
- 20 What is an equation of circle *O* shown in the graph below?

- 1) $(x+2)^2 + (y-2)^2 = 9$
- 2) $(x+2)^2 + (y-2)^2 = 3$
- 3) $(x-2)^2 + (y+2)^2 = 9$
- 4) $(x-2)^2 + (y+2)^2 = 3$

21 The diagram below represents a rectangular solid.

Which statement must be true?

- 1) *EH* and *BC* are coplanar
- 2) *FG* and *AB* are coplanar
- 3) *EH* and *AD* are skew
- 4) FG and CG are skew
- 22 In $\triangle RST$, m $\angle R = 58$ and m $\angle S = 73$. Which inequality is true?
 - 1) RT < TS < RS2) RS < RT < TS
 - $\begin{array}{c} 2) \quad RS < RI < IS \\ 3) \quad RT < RS < TS \end{array}$
 - 4) RS < TS < RT
- 23 The number of degrees in the sum of the interior angles of a pentagon is
 - 1) 72
 - 2) 360
 - 3) 540
 - 4) 720
- 24 What is the equation of a line passing through (2,-1) and parallel to the line represented by the equation y = 2x + 1?

1)
$$y = -\frac{1}{2}x$$

2) $y = -\frac{1}{2}x + 1$

- $3) \quad y = 2x 5$
- $4) \quad y = 2x 1$

- 25 The coordinates of the endpoints of AB are A(0,0)and B(0,6). The equation of the perpendicular bisector of AB is
 - 1) x = 0
 - 2) x = 3
 - 3) y = 0
 - 4) v = 3
- 26 In the diagram below, point *P* is the centroid of $\triangle ABC.$

If PM = 2x + 5 and BP = 7x + 4, what is the length of PM?

- 1) 9
- 2) 2
- 3) 18
- 4) 27
- 27 In $\triangle PQR$, $\angle PRQ$ is a right angle and RT is drawn perpendicular to hypotenuse PQ. If PT = x, RT = 6, and TQ = 4x, what is the length of \overline{PQ} ?

- 1) 9
- 2) 12
- 3) 3
- 4) 15
- 28 In $\triangle ABC$, AB = 5 feet and BC = 3 feet. Which inequality represents all possible values for the length of AC, in feet?
 - 1) $2 \le AC \le 8$
 - 2) 2 < AC < 8
 - 3) $3 \le AC \le 7$
 - 4) 3 < AC < 7

29 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\widehat{mAB} = x + 20$ and $\widehat{mDC} = 2x - 20$. Find \widehat{mAB} .

30 In the diagram below, point M is located on AB. Sketch the locus of points that are 1 unit from AB and the locus of points 2 units from point M. Label with an **X** all points that satisfy both conditions.

31 Determine whether the two lines represented by the equations y = 2x + 3 and 2y + x = 6 are parallel, perpendicular, or neither. Justify your response.

32 The coordinates of the vertices of ΔRST are R(-2,3), S(4,4), and T(2,-2). Triangle R'S'T' is the image of ΔRST after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R'S'T'$. [The use of the set of axes below is optional.]

33 On the diagram below, use a compass and straightedge to construct the bisector of $\angle XYZ$. [Leave all construction marks.]

34 In the diagram below of circle *O*, diameter *AB* is perpendicular to chord \overline{CD} at *E*. If AO = 10 and BE = 4, find the length of \overline{CE} .

35 Triangle *ABC* has coordinates A(2, -2), B(2, 1), and C(4, -2). Triangle A'B'C' is the image of $\triangle ABC$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle ABC$ and its image, $\triangle A'B'C'$. Determine the relationship between the area of $\triangle ABC$ and the area of $\triangle ABC$ is the area of $\triangle ABC$ and the area of $\triangle A'B'C'$.

- 36 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the *nearest tenth of a square inch*, the lateral area of the paint can.
- 37 Triangle *HKL* has vertices H(-7,2), K(3,-4), and L(5,4). The midpoint of \overline{HL} is *M* and the midpoint of \overline{LK} is *N*. Determine and state the coordinates of points *M* and *N*. Justify the statement: \overline{MN} is parallel to \overline{HK} . [The use of the set of axes below is optional.]

38 In the diagram below of quadrilateral *ABCD*, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$. Line segments *AC*, *DB*, and *FG* intersect at *E*. Prove: $\triangle AEF \cong \triangle CEG$

0112ge Answer Section

1	ANS:	2						
	6x + 4	2 = 18x - 12						
	54	4 = 12x						
	:	$x = \frac{54}{12} = 4.5$						
	PTS:	2	REF:	011201ge	STA:	G.G.35	TOP:	Parallel Lines and Transversals
2	ANS:	3	PTS:	2	REF:	011202ge	STA:	G.G.21
	TOP: Centroid, Orthocenter, Incenter and Circumcenter							
3	ANS:	2	PTS:	2	REF:	011203ge	STA:	G.G.73
	TOP:	Equations of C	Circles					
4	ANS:	2						
	The diagonals of a rhombus are perpendicular. $180 - (90 + 12) = 78$							
	D Τς.	2	DEE	011204m	STA.	C C 20	TOD	Special Derellalograms
5	TIS.	2	KLT.	011204ge	51A.	0.0.39	TOP.	Special Fatallelograms
5								
	$d = \sqrt{(4-1)^2 + (7-11)^2} = \sqrt{9} + 16 = \sqrt{25} = 5$							
	ρτς.	2	DEE	011205 ~~	STA.	CCC	TOD	Distance
	FIS. KEV·	∠ general	КЕГ.	011203ge	51A.	0.0.07	TOP.	Distance
6	ANS.	2	₽TS∙	2	REE	011206ge	ST 4 ·	G G 32
0	TOP:	Exterior Angle	e Theor	rem	KLI.	011200ge	5171.	0.0.52
7	ANS:	1	PTS:	2	REF:	011207ge	STA:	G.G.20
	TOP:	Constructions				0		
8	ANS:	4	PTS:	2	REF:	011208ge	STA:	G.G.53
	TOP:	Segments Inte	rcepted	l by Circle	KEY:	two tangents		
9	ANS:	3	PTS:	2	REF:	011209ge	STA:	G.G.44
	TOP:	Similarity Pro	ofs					
10	ANS:	3						
	$\frac{3}{8+3}$	$\frac{3}{8+3+4} \times 180 = 36$						
	PTS:	2	REF:	011210ge	STA:	G.G.30	TOP:	Interior and Exterior Angles of Triangles
11	ANS:	2	PTS:	2	REF:	011211ge	STA:	G.G.55
	TOP:	Properties of T	Fransfo	rmations		U		
12	ANS:	4	PTS:	2	REF:	011212ge	STA:	G.G.71
	TOP:	Equations of C	Circles			-		
13	ANS:	1	PTS:	2	REF:	011213ge	STA:	G.G.24
	TOP:	Negations						

14 ANS: 2 $\frac{50+x}{2} = 34$ 50 + x = 68x = 18STA: G.G.51 TOP: Arcs Determined by Angles PTS: 2 REF: 011214ge KEY: inside circle STA: G.G.12 15 ANS: 2 PTS: 2 REF: 011215ge TOP: Volume 16 ANS: 4 STA: G.G.29 PTS: 2 REF: 011216ge TOP: Triangle Congruency 17 ANS: 3 PTS: 2 REF: 011217ge STA: G.G.64 TOP: Parallel and Perpendicular Lines 18 ANS: 1 PTS: 2 REF: 011218ge STA: G.G.3 TOP: Planes 19 ANS: 4 $\sqrt{25^2 - \left(\frac{26-12}{2}\right)^2} = 24$ PTS: 2 REF: 011219ge STA: G.G.40 TOP: Trapezoids REF: 011220ge STA: G.G.72 20 ANS: 1 PTS: 2 TOP: Equations of Circles 21 ANS: 1 PTS: 2 REF: 011221ge STA: G.G.10 TOP: Solids 22 ANS: 4 PTS: 2 REF: 011222ge STA: G.G.34 TOP: Angle Side Relationship 23 ANS: 3 (n-2)180 = (5-2)180 = 540PTS: 2 REF: 011223ge STA: G.G.36 TOP: Interior and Exterior Angles of Polygons 24 ANS: 3 y = mx + b-1 = 2(2) + b-5 = bPTS: 2 REF: 011224ge STA: G.G.65 TOP: Parallel and Perpendicular Lines 25 ANS: 4 AB is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of AB, which is (0,3). PTS: 2 REF: 011225ge STA: G.G.68 TOP: Perpendicular Bisector

2

26 ANS: 1 7x + 4 = 2(2x + 5). PM = 2(2) + 5 = 97x + 4 = 4x + 103x = 6*x* = 2 PTS: 2 STA: G.G.43 REF: 011226ge TOP: Centroid 27 ANS: 4 $x \cdot 4x = 6^2$. PQ = 4x + x = 5x = 5(3) = 15 $4x^2 = 36$ x = 3PTS: 2 REF: 011227ge STA: G.G.47 TOP: Similarity KEY: leg 28 ANS: 2 5 - 3 = 2, 5 + 3 = 8PTS: 2 REF: 011228ge STA: G.G.33 TOP: Triangle Inequality Theorem 29 ANS: 2x - 20 = x + 20. $\widehat{mAB} = x + 20 = 40 + 20 = 60$ x = 40PTS: 2 REF: 011229ge STA: G.G.52 TOP: Chords 30 ANS: M В A PTS: 2 STA: G.G.22 REF: 011230ge TOP: Locus 31 ANS: The slope of y = 2x + 3 is 2. The slope of 2y + x = 6 is $\frac{-A}{B} = \frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular. STA: G.G.63 TOP: Parallel and Perpendicular Lines PTS: 2 REF: 011231ge 32 ANS: R'(-3,-2), S'(-4,4), and T'(2,2). PTS: 2 REF: 011232ge STA: G.G.54 **TOP:** Rotations

33 ANS:

PTS: 2 REF: 011233ge STA: G.G.17 TOP: Constructions 34 ANS: $EO = 6. CE = \sqrt{10^2 - 6^2} = 8$ PTS: 2 REF: 011234ge STA: G.G.49 TOP: Chords

35 ANS:

A'(7,-4), B'(7,-1), C'(9,-4). The areas are equal because translations preserve distance.

PTS: 4 REF: 011235ge STA: G.G.55 TOP: Properties of Transformations 36 ANS: $V = \pi r^2 h$. $L = 2\pi r h = 2\pi \cdot 5\sqrt{2} \cdot 12 \approx 533.1$ $600\pi = \pi r^2 \cdot 12$ $50 = r^2$ $\sqrt{25}\sqrt{2} = r$ $5\sqrt{2} = r$ PTS: 4 REF: 011236ge STA: G.G.14 TOP: Volume and Lateral Area

37 ANS:

 $M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right) = M(-1,3). \ N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right) = N(4,0). \ \overline{MN} \text{ is a midsegment.}$ PTS: 4 REF: 011237ge STA: G.G.42 TOP: Midsegments

1

38 ANS:

Quadrilateral *ABCD*, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$ are given. $\overline{AD} || \overline{BC}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. *ABCD* is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{AE} \cong \overline{CE}$ because the diagonals of a parallelogram bisect each other. $\angle FEA \cong \angle GEC$ as vertical angles. $\triangle AEF \cong \triangle CEG$ by ASA.

PTS: 6 REF: 011238ge STA: G.G.27 TOP: Quadrilateral Proofs